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Abstract

Protein function prediction is an essential task in bioinformatics which benefits disease mechanism elucidation and drug target
discovery. Due to the explosive growth of proteins in sequence databases and the diversity of their functions, it remains challenging
to fast and accurately predict protein functions from sequences alone. Although many methods have integrated protein structures,
biological networks or literature information to improve performance, these extra features are often unavailable for most proteins.
Here, we propose SPROF-GO, a Sequence-based alignment-free PROtein Function predictor, which leverages a pretrained language
model to efficiently extract informative sequence embeddings and employs self-attention pooling to focus on important residues. The
prediction is further advanced by exploiting the homology information and accounting for the overlapping communities of proteins
with related functions through the label diffusion algorithm. SPROF-GO was shown to surpass state-of-the-art sequence-based and
even network-based approaches by more than 14.5, 27.3 and 10.1% in area under the precision-recall curve on the three sub-ontology
test sets, respectively. Our method was also demonstrated to generalize well on non-homologous proteins and unseen species. Finally,
visualization based on the attention mechanism indicated that SPROF-GO is able to capture sequence domains useful for function
prediction. The datasets, source codes and trained models of SPROF-GO are available at https://github.com/biomed-AI/SPROF-GO. The
SPROF-GO web server is freely available at http://bio-web1.nscc-gz.cn/app/sprof-go.
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INTRODUCTION
Proteins play crucial roles within living organisms, including sig-
nal transduction, catalysis of metabolic reaction and mainte-
nance of cellular structure. Identification of protein functions
benefits disease mechanism elucidation and drug target discov-
ery [1]. Since traditional biochemical experiments to determine
protein functions are usually expensive, time-consuming, and
of low throughput [2], less than 0.1% of the available protein
sequences are currently annotated with reliable information [3],
and the gap between unannotated and annotated sequences is
expanding at an unparalleled rate [4]. Therefore, it is imperative to
develop efficient and effective computational methods for protein
function prediction [5].

The functions of proteins are standardized by Gene Ontology
(GO) [6], which covers three biological domains: molecular func-
tion (MF), biological process (BP), and cellular component (CC),
with over 43 000 classes/terms (November 2022). Since a protein

is usually associated with multiple GO terms, protein function
prediction can be regarded as a large-scale, multi-class, and multi-
label problem. Moreover, GO is a directed acyclic graph (DAG), in
which if a protein is annotated with a GO term, all its ancestor
terms up to the root of the ontology should also be annotated.
Therefore, protein function predictors should take the hierarchi-
cal structure of GO into account and yield ‘consistent’ outputs:
the predicted probability of a GO term must be equal to or greater
than all of its child terms [7]. To facilitate this challenging task, the
critical assessment of functional annotation (CAFA) competition
has been held four times [5, 8, 9] using a time-delayed evaluation
process. Specifically, given the target proteins, participants were
required to submit the predictions before T0. After a few months
(T1), the organizers collected proteins with new experimental
annotations as the final test set, consisting of no-knowledge
and limited-knowledge proteins. Both types of proteins received
their first experimental annotations in the target GO domain
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between T0 and T1. However, no-knowledge proteins did not have
any experimental annotations before T0, while limited-knowledge
proteins did in domains other than the target domain. Here we
focus on the function prediction for no-knowledge proteins as the
vast majority of proteins have no experimental annotations.

Current protein function predictors can be roughly grouped
into four categories according to their used information:
sequence-based, structure-based, biological network-based, and
biomedical literature-based methods. Most sequence-based
methods employ sequence similarity, search for sequence
domain, or adopt deep learning to capture discriminative
features to infer functions. Specifically, a basic way is to transfer
annotations directly from homologous sequences with known
functions, like Blast2GO [10], since similar sequences tend to
have similar functions [5]. Another approach is to search for
functional sequence domain or family. For example, GOLabeler
[11] utilizes learning to rank algorithm to integrate sequence
homology, protein domains and families derived from sequences
by BLAST [12] and InterProScan [13]. With the development of
deep learning technology, discriminative embeddings can also
be automatically extracted from preliminary sequences through
designing complex neural networks, including convolutional
neural networks in DeepGOPlus [14] and transformer in TALE
[15]. However, current sequence-based methods suffer from
either low prediction accuracy or the high computational cost
(owing to the usage of multi-sequence alignment). On the
other hand, recent structure-based methods apply native or
predicted protein structures as input, usually followed by graph
neural networks (GNN) to learn the local tertiary patterns for
function prediction, as in DeepFRI [16] and GAT-GO [17]. Network-
based methods exploit the rationale that proteins connected
in biological networks (e.g. protein–protein interaction (PPI) or
metabolic network) are likely to share the same functions [18].
For example, NetGO [19] integrates multiple protein networks in
STRING [20] and transfers annotations from nearest neighbors
in the aggregated network. DeepGO [21] adopts knowledge graph
embedding algorithm to learn protein features from PPI networks.
S2F [22] transfers PPI networks from model organisms to newly
sequenced ones, in which label diffusion is employed to propagate
initial predictions from several sequence-based component
predictors. DeepGraphGO [23] makes the most of both protein
sequence domain and high-order protein network information
via multispecies GNN strategy. Literature-based methods like
DeepText2GO [24] attempt to extract explicit descriptions of
protein functions or properties from biomedical texts. NetGO
2.0 [25] incorporates literature and latent sequence information
into NetGO to further improve performance. Although CAFA
challenge has shown that integrative predictors combining
multiple information sources usually outperform sequence-
based methods, these extra features are often unavailable,
incomplete, or difficult to obtain for most proteins thus limiting
their scopes. Therefore, methods that accurately predict protein
functions from sequences alone may be more general and
applicable to most proteins that have not been extensively
studied.

Since protein sequences can be regarded as a language in life,
unsupervised pretraining with language models from natural lan-
guage processing has recently been applied to protein sequence
representation learning and has displayed promising results in
downstream predictions including secondary structures, tertiary
contacts, mutational effects, and protein binding sites [26–29]. Our
previous work [29] has shown that sequence representations from
pretrained language models can outperform manually engineered

evolutionary and structural features for binding site detection.
Such results inspire us to develop a fast and accurate sequence-
based protein function predictor that does not rely on any fea-
tures constructed from protein domains, structures, biological
networks, or literature. Besides, network propagation approaches
have been shown successful to predict protein functions in which
existing knowledge is amplified by propagating an initial set
of functional labels from experimentally characterized proteins
through PPI networks [30]. S2F [22] further presents a label dif-
fusion algorithm accounting for the overlapping communities
of proteins with related functions. Therefore, it is promising to
advance the performance of sequence-based function predictors
by employing label diffusion over homology network built solely
on sequence similarities.

In this study, we propose SPROF-GO, a Sequence-based
alignment-free PROtein Function predictor, which leverages
a pretrained protein language model to efficiently extract
informative sequence embeddings and employs self-attention
pooling to focus on important residues. Label diffusion algorithm
is adopted to exploit the homology information and account for
the overlapping communities of proteins with related functions.
Besides, a hierarchical learning strategy is applied to produce
consistent predictions and improve performance. SPROF-GO was
shown to surpass state-of-the-art sequence-based and even
network-based approaches by more than 14.5, 27.3 and 10.1%
in area under the precision-recall curve (AUPR) on the three
sub-ontology test sets, respectively. Our method was further
demonstrated to generalize well on non-homologous proteins
and unseen species. Finally, visualization based on the attention
mechanism indicated that SPROF-GO is able to capture sequence
domains useful for function prediction. We suggest that our fast
and accurate method could scale with the current fast-growing
sequence databases, and provide useful information for biologists
studying disease mechanism and chemists interested in targeted
drug design.

MATERIALS AND METHODS
Datasets
We adopted the benchmark datasets proposed in [23], in which the
training and test sets were collected following the standard proto-
col of CAFA. Specifically, the protein sequences were downloaded
from UniProt [3], and the GO term annotations were extracted
and combined from Swiss-Prot [31], GOA [32] and GO [6] in Jan-
uary 2020. Only experimental annotations with the following
evidence codes were kept: IDA, IPI, EXP, IGI, IMP, IEP, IC or TA.
The annotations were further up-propagated based on the ‘is-a’
relationship in the hierarchical structure of GO, and the root GO
terms were omitted. Then, the training, validation and test sets
were split according to the annotation time stamps. The training
sets contain proteins annotated before January 2018, while the
validation and test sets contain no-knowledge proteins annotated
from January to December 2018 and from January 2019 to January
2020, respectively. In this study, we discarded sequences longer
than 2000 in the training sets and trimmed sequences to 5000
in the validation and test sets due to the memory limit of GPU.
Furthermore, to optimize the training efficiency and predicted
accuracy, we only focused on the GO terms with enough training
samples (≥ 50 sequences) in the training steps, resulting in 790,
4766 and 667 classes for the MF, BP and CC sub-ontology, respec-
tively. In the evaluation phase, we considered all terms to ensure
fair comparison with other methods. Table 1 shows the detailed
statistics of the training, validation and test sets for the three
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Table 1. Numbers of proteins in the training, validation and test sets used in this study for the three domains in GO

Train Valid Test

MF BP CC MF BP CC MF BP CC

HUMAN (9606) 9208 12 095 18 842 86 138 137 41 87 767
MOUSE (10090) 6138 9927 8482 103 299 228 65 156 130
All data 51 549 85 104 76 098 490 1570 923 426 925 1224
Data used by SPROF-GO 50 326 82 793 74 161 490 1570 923 426 925 1224

Figure 1. Overview of the SPROF-GO method. First, the protein sequence is input to the pretrained protein language model to extract the initial sequence
embedding. Then, the embedding matrix is fed to two MLPs parallelly to learn an attention vector and a hidden embedding matrix. Finally, the hidden
embeddings are weighted averaged among different sequence positions based on the attention scores, which is input to the output MLP to predict the
GO term probabilities. This initial prediction is used during training to update the model parameters. In the test phase, the input sequence is further
searched against the training set using DIAMOND to build a sequence homology network. The initial prediction and the homology network are fed into
the label diffusion algorithm, which outputs the final protein function prediction.

domains in GO, as well as the HUMAN and MOUSE subsets used
in our downstream analyses.

The architecture of SPROF-GO
The overall architecture of SPROF-GO is shown in Figure 1. First,
the protein sequence is input to the pretrained protein language
model to extract an initial sequence embedding matrix. Then, the
embedding matrix is fed to two multilayer perceptrons (MLPs)
parallelly to learn an attention vector and a more informative
hidden embedding matrix. Finally, the hidden embeddings are
weighted averaged among different sequence positions based on
the attention scores to generate an embedding vector, which is
input to the output MLP to predict the GO term probabilities.
Additionally, a hierarchical learning strategy is applied to ensure
the prediction to be consistent. This initial prediction is used
during training to update the model parameters. In the test phase,
the input sequence is further searched against the training set to
build a sequence homology network. The initial prediction and
the homology network are fed into the label diffusion algorithm,
which outputs the final protein function prediction. Details of
these modules are explained in the following sections.

Pretrained protein language model
SPROF-GO leverages the protein language model ProtT5-XL-U50
[27] (denoted as ProtTrans) for efficient feature extraction, thus

bypassing the computationally intense sequence alignment to
search for sequence domains or produce evolutionary profiles.
ProtTrans is a transformer-based auto-encoder named T5 [33] pre-
trained in a self-supervised manner, essentially learning to predict
masked amino acids. Concretely, the ProtTrans model contains 24
layers and 32 heads with 3B parameters, which was first trained
on BFD [34] and then fine-tuned on UniRef50 [35]. The BERT’s
denoising objective [36] was adopted to corrupt and reconstruct
single tokens using a masking probability of 15% (details shown
in Supplementary Note 1). We extracted the output from the last
layer of the encoder part of ProtTrans as the initial sequence repre-
sentation H(0) ∈ R

n×1024, with n denoting the sequence length and
1024 being the feature dimension. Note that the inference cost
of ProtTrans is really low, and the feature extraction process for
our whole benchmark datasets (∼120 000 sequences, ∼500 amino
acids on average) can be done in about 6 h on an Nvidia GeForce
RTX 3090 GPU. The feature values in the sequence representations
from ProtTrans were further normalized to scores between 0 and
1 as follows:

vnorm = v − Min
Max − Min

(1)

where v is the original feature value, and Min and Max are the
smallest and largest values of this feature type observed in the
training set, respectively.
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Multilayer perceptron
The sequence embedding matrix output from ProtTrans is fed to
two MLPs parallelly to learn an attention vector and a hidden
embedding matrix. MLP is a fully connected class of feedforward
artificial neural network, which can be generally computed as
follows:

H(l) = σ
(
H(l−1)W(l) + b(l)

)
(2)

where H(l−1) ∈ R
n×dl−1 is the input of the lth MLP layer; W(l) ∈

R
dl−1×dl is the weight matrix; b(l) ∈ R

dl is the bias term; σ is the
non-linear activation function and H(l) ∈ R

n×dl is the output of
the lth MLP layer. Between two layers of the MLP, we also add
layer normalization [37] to stabilize the hidden state dynamics
and dropout [38] to avoid overfitting.

Self-attention pooling
Many methods [16, 25] employ global mean pooling or max
pooling to convert a residual-level embedding matrix into
a protein-level embedding vector for subsequent function
prediction, which might either dilute or lose the important
features. Here we employ self-attention pooling to automatically
focus on important residues as well as provide visualization and
interpretability. We set the output dimension of the last layer in
MLPatt to 1 and the activation function to softmax, so that the
output of MLPatt is an attention vector A ∈ R

n×1. Let H(L) ∈ R
n×d

denote the hidden embedding output by MLPhid, then the self-
attention pooling is calculated as follows:

Hpool = ATH(L) (3)

To jointly attend to information from different representation
subspaces at different positions, multi-head attention is used in
practice to produce h different attention vectors, perform the self-
attention pooling in parallel and then concatenate them together.
Finally, Hpool is input to MLPout with a sigmoid function in the
last layer to transform this embedding vector to a K-dimensional
function prediction vector Hout, where K is the number of GO
terms that need to be predicted.

Hierarchical learning
Protein function prediction is a hierarchical multi-label classifi-
cation problem, in which classes (GO terms) are organized as a
DAG, and every prediction must be consistent: the probability of
a GO term must be equal to or greater than all of its child terms.
Most methods (e.g. [22]) allow inconsistent predictions and require
additional post-processing to ensure the consistency at inference
time. Here we apply the hierarchical learning strategy proposed by
[39] to produce consistent predictions and improve performance,
which consists of two elements: (1) a max constraint module
(MCM) built upon the network to guarantee consistent predictions
inherently; (2) a loss function teaching the network when to
exploit the predictions of the lower classes in the hierarchy for
making predictions on the upper ones.

Specifically, let H be a K×K matrix obtained by stacking K rows
of the prediction vector Hout, and M be a K × K matrix such that
Mij = 1 if the jth GO term is a subclass of the ith GO term, and
Mij = 0 otherwise. Here, the subclasses of a target term include
the child terms in the GO DAG and the target term itself, and only
the ‘is-a’ relationship in GO is considered. Then, the prediction
output by MCM is computed as:

P = MCM
(
Hout, M

) = max
(
H � M, dim = 1

)
(4)

where � represents the element-wise product. In the valida-
tion and test phases, MCM sets the probability of a GO term to
the maximal probability of its subclasses, similar to the post-
processing used by other methods. However, if the output of
MCM is directly used for training with standard binary cross-
entropy loss (BCELoss), as in [40], the network may remain stuck
in bad local optima [39]. Thus, max constraint loss (MCLoss) is
introduced to control when to exploit the predictive probabilities
of the lower classes. Let y be the ground truth function annotation
vector, y be a K × K matrix obtained by stacking K rows of y. Then
the MCLoss is calculate as:

MCLoss
(
Hout, y

) = BCELoss
((

1 − y
) � P + y � max

(
H � M � y, dim = 1

)
, y

)
(5)

which means that the probability of a negative class should take
the maximal probability of its subclasses, while the probability
of a positive class should take the maximal probability of its
positive subclasses. Detailed explanations of why MCLoss works
are further shown in Supplementary Note 2 using a simple case
with only two classes.

Homology-based label diffusion
Proteins rarely perform their functions in isolation. Network prop-
agation methods exploit the fact that groups of proteins con-
nected in functional networks form communities that share sim-
ilar functions [30]. However, when a protein has more than one
function, it may belong to more than one functional group. Such
proteins lying at the intersection of communities are generally
more functionally similar compared to their neighbors, because
they share more functional roles. Therefore, the propagation/dif-
fusion of information between them should be higher. Here, we
adopt the label diffusion algorithm proposed by [22] to explicitly
model this overlapping community effect, in which we make three
modifications: (1) we diffuse annotations over a homology net-
work built solely on sequence similarities, instead of PPI networks
in STRING; (2) we incorporate the ground truth annotations from
the training set rather than only use test proteins for diffusion;
(3) we employ DIAMOND [41] instead of BLAST [12] for similarity
search and re-implement the algorithm with sparse matrix oper-
ation throughout, to accelerate the computation thus adapting to
the large size of the training set.

Specifically, label diffusion is performed only in the test phase
to further improve the initial function predictions. We use DIA-
MOND to search the whole test set against the training set to find
training sequences similar to the test sequences, from which a
homology network Q ∈ R

N×N is built using the sequence identity
for each pair of proteins (N is the number of hits in the training
set plus the number of test proteins). Then, the weighted Jaccard
similarity matrix is defined to measure how much a pair of
proteins belong to the same community in network Q:

Jij =
∑

k QikQjk∑
k Qik + ∑

k Qjk − ∑
kQikQjk

(6)

For a target GO term k, we learn the kth column of the final anno-
tation matrix F (denoted as Fk) by minimizing the cost function
C (Fk):

C (Fk) =
n∑

i=1

(Fik − Yik)
2 + λ

2

n∑
i=1

1
di

n∑
j=1

JijQij
(
Fik − Fjk

)2 (7)
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where the first term is to conserve the initial labels/predictions
Yik, the second term accounts for the consistency of the label-
s/predictions of adjacent nodes in the network, JijQij models the
homology information and overlapping community effect, and λ

is a regularization parameter. Note that 1/di is a normalization
factor defined as:

1
di

= 1∑
j JijQij

(8)

We define Q∗ and its Laplacian matrix L as follows:

Q∗
ij = 1

2

(
1
di

+ 1
dj

)
JijQij (9)

L = D − Q∗ (10)

where D denotes the diagonal degree matrix of Q∗. Then, the
closed-form solution that minimizes C (Fk) can be expressed as:

F = (I + λL)−1Y (11)

where I ∈ R
N×N is an identity matrix, Y ∈ R

N×K is the concatenation
of the labels of the training set and the initial predictions of
the test set, and F ∈ R

N×K is the updated annotations for the
training samples and the test proteins, from which we retrieve
our final predictions for the test sequences. Moreover, as proven
in [22], since our initial predictions are consistent with the GO
structure, our final predictions output by label diffusion will also
be consistent.

Implementation and evaluation
We trained our models to predict GO terms separately for MF, BP
and CC ontology. For each training set of the sub-ontology, we
trained five models using five different random seeds, and their
average performance on the validation set was used to choose
the best feature combination and optimize all hyperparameters
through grid search (Supplementary Table S1). In the test phase,
all five trained models were used to make predictions, which
were then averaged as the assembled prediction of SPROF-GO.
Specifically, we employed a two-layer fully connected architecture
for the three MLPs in SPROF-GO with the following set of hyper-
parameters: hidden units of 256, attention heads (h) of 8, dropout
rate of 0.1 and batch size of 20. The label diffusion regularization
parameter λ was simply set to 1. We utilized the Adam optimizer
[42] with β1 = 0.9, β2 = 0.99, weight decay of 10−5 and learning rate
of 2 × 10−4 for model optimization. We implemented the proposed
method with Pytorch 1.13.0 [43]. The training process for one
model lasted at most 30 epochs, and we performed early stopping
with patience of four epochs based on the validation performance,
which took ∼40 min for MF and CC ontology, and ∼2 h for BP
ontology on an Nvidia GeForce RTX 3090 GPU. During the test
phase, it took ∼2 min to make predictions for all proteins in the
three sub-ontology test sets (∼2500 sequences).

Similar to the previous studies [14, 23], we used Fmax and
AUPR to evaluate the predictive performance, whose detailed
definitions are given in Supplementary Note 3. Fmax is the max-
imum protein-centric F-measure computed over all prediction
thresholds, which is a major evaluation metrics in CAFA. AUPR
is also a suitable measure for highly unbalanced dataset since it
emphasizes more on the minority class [44, 45].

RESULTS
The overview of SPROF-GO is shown in Figure 1. For a given protein
sequence, the pretrained language model is employed to extract
a sequence embedding matrix, which is fed to the self-attention
pooling module to generate a protein-level representation for
the final output layer. Besides, hierarchical learning is applied
to ensure consistent prediction. In the test phase, the predic-
tion is further advanced by exploiting the homology information
through label diffusion. The Results section is organized as fol-
lows. First, we demonstrated the superiority of the feature from a
pretrained language model over other widely used features. Sec-
ond, we conducted ablation study on several techniques used in
SPROF-GO. Third, we compared SPROF-GO with other state-of-the-
art methods. Fourth, we evaluated SPROF-GO on non-homologous
proteins and unseen species to verify its robustness. Lastly, we
interpreted the decision mechanism of SPROF-GO by visualizing
the attention scores.

Feature from a pretrained language model is
informative for protein function prediction
We evaluated SPROF-GO on the test sets of the three domains
in GO (described in Table 1) by Fmax and AUPR. As shown in
Table 2, SPROF-GO achieved Fmax of 0.647, 0.335 and 0.725, as
well as AUPR of 0.622, 0.247 and 0.765 on the MF, BP and CC
test sets, respectively. To demonstrate the effectiveness of the
language model (ProtTrans) representation employed by SPROF-
GO, we conducted feature ablation experiments to compare Prot-
Trans with other popular features in this field. When adopting
the one-hot encoding of amino acid types, the model showed
poor performance with AUPR of 0.475, 0.187 and 0.705 on the
three sub-ontology test sets, and the performance would fur-
ther degrade largely when removing the label diffusion module
(AUPR of 0.177, 0.130 and 0.582). This suggested that the primary
sequences alone are insufficient to characterize protein functions,
while sequence homology information is still a valuable source
for function inference. We also investigated the widely used [11,
19, 23, 25] InterPro feature generated by InterProScan [13] through
sequence alignment, which is a binary protein-level vector indi-
cating the existences of protein domains and families. As shown
in Table 2, the model using InterPro obtained AUPR of 0.594, 0.203
and 0.730, surpassing the one using one-hot encoding, which is
reasonable since domains often form functional units, such as
the calcium-binding EF hand domain of calmodulin. However, the
sequence feature by ProtTrans outperformed one-hot, InterPro or
the combination of these two features by large margins. Note
that the generation of the ProtTrans feature is also much more
efficient than that of InterPro since no database searches are
needed. Moreover, further integrating one-hot and InterPro fea-
tures to ProtTrans was redundant and could not attain any further
improvements, suggesting that the ProtTrans language model
may have potentially captured the protein sequence, domain and
family knowledge informative for function prediction.

Model ablation study
To investigate the impacts of the self-attention pooling, hierarchi-
cal learning, homology-based label diffusion and model assembly
techniques applied by SPROF-GO, we removed one of the four
components at a time and then re-trained the model using the
same sequence feature. As shown in Table 3, the removal of
the assembly strategy caused the largest average AUPR drop
(0.017) on the three test sets, while the removals of the atten-
tion pooling (using mean pooling instead), hierarchical learning

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/3/bbad117/7085635 by N

anjing Agricultural U
niversity user on 23 Septem

ber 2023

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad117#supplementary-data


6 | Yuan et al.

Table 2. The predictive performance on the test sets of the three domains in GO using different features

Feature Fmax AUPR

MF BP CC MF BP CC

One-hot 0.555 0.291 0.680 0.475 0.187 0.705
InterPro 0.631 0.300 0.687 0.594 0.203 0.730
One-hot +
InterPro

0.634 0.299 0.689 0.589 0.203 0.732

ProtTrans
(SPROF-GO)

0.647 0.335 0.725 0.622 0.247 0.765

ProtTrans +
one-hot + InterPro

0.645 0.329 0.722 0.620 0.239 0.750

Note: Bold fonts indicate the best results.

Table 3. Ablation study on different techniques used by SPROF-GO on the test sets of the three domains in GO

Method Fmax AUPR

MF BP CC MF BP CC

SPROF-GObase 0.583 0.307 0.692 0.563 0.209 0.733
SPROF-GO w/o
attention

0.628 0.328 0.721 0.613 0.235 0.760

SPROF-GO w/o
hierarchical
learning

0.638 0.333 0.723 0.612 0.238 0.761

SPROF-GO w/o
label diffusion

0.633 0.328 0.721 0.600 0.240 0.765

SPROF-GO w/o
assembly

0.646 0.327 0.715 0.605 0.235 0.743

SPROF-GO 0.647 0.335 0.725 0.622 0.247 0.765

Note: SPROF-GObase denotes the baseline method that does not use any of the above-mentioned techniques. Bold fonts indicate the best results.

(using post-processing instead) and label diffusion caused average
AUPR drops of 0.009, 0.008 and 0.010, respectively. Note that
since SPROF-GO is supported by several techniques, removal of a
single component seemed to have minor influence on the overall
performance. Moreover, some components may have significant
benefits on one ontology, but have small impacts on the others.
For example, the removal of label diffusion caused the largest
AUPR drop of 0.022 on the MF test set, while it had no impact
on the AUPR of the CC test set, probably because a pretrained
language model is sufficient to capture most discriminative fea-
tures for the CC ontology (an easier task with more training data
and fewer terms to predict compared to the MF ontology). The
removal of attention or assembly caused the largest AUPR drops
of 0.012 on the BP test set, and the removal of assembly caused
the largest AUPR drop of 0.022 on the CC test set. Here, we also
report the performance of a baseline method that does not use
any of the above-mentioned techniques (SPROF-GObase). SPROF-
GO outperformed this baseline significantly with improvements
of 0.064, 0.028 and 0.033 on Fmax, and 0.059, 0.038 and 0.032 on
AUPR in the three test sets, further indicating the advantages of
the four modules in SPROF-GO. We also repeated this experiment
five times using different sets of random seeds for training and
got similar results (Supplementary Table S2).

Comparison with state-of-the-art methods
We compared SPROF-GO with four sequence-based (BLAST-KNN,
LR-InterPro, DeepGOCNN and DeepGOPlus) and two network-
based (Net-KNN and DeepGraphGO) predictors on the test sets of
the three domains in GO. The baseline method (SPROF-GObase)
that utilizes ProtTrans and MLP with mean pooling is also
considered here. The implementation details of these competing

methods are introduced in Supplementary Note 4. As reported in
Table 4, GO terms in the BP ontology seem harder to predict for all
methods, which may be due to the large number of terms and the
deep and complex structure of the BP DAG. Howsoever, SPROF-GO
outperformed all other sequence-based and even network-based
methods on Fmax and AUPR in all three domains. Undoubtedly,
SPROF-GO substantially surpassed the sequence-based method
DeepGOPlus by 56.3%, 128.7% and 28.6% on AUPR in the three
test sets, respectively. This indicated that representing protein
sequence simply by one-hot encoding followed by CNN and min-
ing homology information simply using k-nearest neighbors are
not enough to capture the most helpful information for function
prediction. Interestingly, though our method is a sequence-based
predictor, it outperformed the state-of-the-art network-based
method DeepGraphGO by 3.9%, 2.4% and 4.8% on Fmax, and 14.5%,
27.3% and 10.1% on AUPR. This is expected because the sequence
representation from the pretrained language model used by
SPROF-GO is more informative and powerful than the handcrafted
domain and family features employed by DeepGraphGO (shown
in Table 2). Another reason may be that the network information
also brought noises since the protein–protein associations in
STRING are not always from experiments. In addition, the label
diffusion in SPROF-GO could further boost the predictive quality
by exploiting the homology information and overlapping commu-
nity effect. On the other hand, our method is also computationally
efficient. Empirically, it takes ∼7 min to extract features and make
predictions on the three ontologies for 1000 proteins with 500
residues on average using SPROF-GO on an Nvidia GeForce RTX
3090 GPU. However, DeepGraphGO can only predict less than five
sequences in the same time since the generation of the InterPro
feature requires expensive database searches.
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Table 4. Performance comparison of SPROF-GO with state-of-the-art methods on the test sets of the three domains in GO

Method Fmax AUPR

MF BP CC MF BP CC

BLAST-KNN 0.590 0.274 0.650 0.455 0.113 0.570
LR-InterPro 0.617 0.278 0.661 0.530 0.144 0.672
Net-KNN 0.426 0.305 0.667 0.276 0.157 0.641
DeepGOCNN 0.434 0.248 0.632 0.306 0.101 0.573
DeepGOPlus 0.593 0.290 0.672 0.398 0.108 0.595
DeepGraphGO 0.623 0.327 0.692 0.543 0.194 0.695
SPROF-GObase 0.583 0.307 0.692 0.563 0.209 0.733
SPROF-GO 0.647 0.335 0.725 0.622 0.247 0.765

Note: SPROF-GObase denotes the baseline method that employs ProtTrans and MLP with mean pooling. Bold and underlined fonts indicate the best and
second-best results, respectively.

Table 5. Performance comparison of SPROF-GO with state-of-the-art methods on difficult proteins within the test sets of the three
domains in GO

Method Fmax AUPR

MF BP CC MF BP CC

BLAST-KNN 0.534 0.274 0.521 0.377 0.114 0.354
LR-InterPro 0.589 0.275 0.613 0.493 0.148 0.591
Net-KNN 0.404 0.292 0.595 0.230 0.142 0.560
DeepGOCNN 0.406 0.243 0.578 0.246 0.091 0.478
DeepGOPlus 0.564 0.292 0.602 0.326 0.108 0.454
DeepGraphGO 0.598 0.322 0.625 0.508 0.184 0.607
SPROF-GO 0.630 0.339 0.682 0.617 0.256 0.708

Note: Bold and underlined fonts indicate the best and second-best results, respectively.

To further validate the adaptability of SPROF-GO to other
GO datasets and relationships, we adopted another benchmark
dataset used by NetGO 2.0 [25] and DeepGOZero [46] to evaluate
our method. NetGO 2.0 is a hybrid predictor which incorporates
sequence, literature, domain, family and network information,
while DeepGOZero is a sequence-based method exploiting formal
axioms in GO to make zero-shot predictions. The generation
of this NetGO 2.0 dataset is similar to the one used in our
study, except that it propagated the annotations using all types
of relationships instead of using ‘is-a’ only (details shown in
Supplementary Table S3). We retrained SPROF-GO with simply
the same hyperparameters, and the performance comparison
of SPROF-GO with other state-of-the-art methods is shown in
Supplementary Table S4. Specifically, SPROF-GO obtained Fmax

values of 0.739, 0.453 and 0.729 on the MF, BP and CC test sets,
surpassing DeepGOZero (0.662, 0.396, 0.662), DeepGraphGO (0.671,
0.418, 0.679), NetGO 2.0 (0.698, 0.431, 0.662) and other methods
consistently, which further demonstrated the adaptability and
robustness of our proposed framework.

Generalization on non-homologous proteins and
unseen species
To examine the generalization ability of our method for non-
homologous proteins, we compared SPROF-GO with other com-
peting methods on difficult proteins within the test sets, which are
defined by CAFA2 [8] as the test proteins with sequence identity
<60% to the training set. The numbers of difficult proteins in the
MF, BP and CC test sets are 303, 649 and 437, respectively. As shown
in Table 5, almost all methods showed performance drops in
different degrees compared to the results on the original test sets
(Table 4). However, SPROF-GO still outperformed all other meth-
ods on Fmax and AUPR in all three domains. Specifically, SPROF-
GO maintained similar performance in the MF/BP ontology, with

AUPR of 0.622/0.247 on the full test set and 0.617/0.256 on the sub-
set of difficult proteins. By comparison, the AUPR of DeepGraphGO
in MF and BP decreased from 0.543 to 0.508 and 0.194 to 0.184,
respectively. As for the CC ontology, AUPR decreased by 12.7% for
DeepGraphGO but only 7.5% for SPROF-GO on difficult proteins.
Interestingly, we found that the label diffusion module could still
bring improvements in this scenario by mining annotations from
dissimilar sequences, and its removal caused AUPR drops of 0.020,
0.011 and 0.003 on the MF, BP and CC test sets, respectively. These
results suggested that our method can generalize well on non-
homologous proteins, rather than just remember the functions of
similar sequences in the training set, thus making it a robust and
reliable method for function prediction of novel sequences.

We also investigated the performance of SPROF-GO and other
methods over proteins of HUMAN and MOUSE within the test sets
(details shown in Table 1), and SPROF-GO again outperformed all
competing methods in all twelve settings except one (Supplemen-
tary Table S5). More importantly, to explore the generalization
ability of our method for unseen species, we further evaluated
SPROF-GO and the second-best method DeepGraphGO on the
HUMAN and MOUSE proteins when trained with proteins of all
species except the target species (denoted by w/o species). As
shown in Figure 2, the AUPR of both methods decreased in most
cases when excluding the training data of the target species. How-
ever, SPROF-GOw/o species still surpassed DeepGraphGOw/o species in
all three domains for the HUMAN and MOUSE proteins. More-
over, even without training data from the target species, SPROF-
GOw/o species outperformed DeepGraphGO using the whole training
set in all six settings except one. For example, SPROF-GOw/o HUMAN

achieved AUPR of 0.735 for CC ontology on the HUMAN proteins,
exceeding the one by DeepGraphGO using the full training set
(0.642). Detailed evaluation results are shown in Supplementary
Tables S6 and S7, where the performance using only the target
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Figure 2. Performance comparison of SPROF-GO and DeepGraphGO on the HUMAN (A) and MOUSE (B) proteins within the test sets when trained with
proteins of all species or all species except the target species (denoted by w/o HUMAN and w/o MOUSE).

Figure 3. Visualization of two examples (Q6DR03 and Q9LIB5) in the MF ontology test set. The left panels show the attention scores by SPROF-GO
at different sequence positions (upper lines), as well as the locations of the domains found by InterProScan (lower bars). The right panels show the
information of the test proteins, including UniProt ID, InterPro domain ID, domain name and ground truth function annotation. The GO terms correctly
identified by SPROF-GO are marked with ticks, and the root GO term (GO:0003674 molecular function) is omitted.

species for training is also included. These results suggested that
our method is robust and can also generalize on proteins of
unseen species in the training set, thus having the potential to
predict functions for newly sequenced organisms.

Model interpretation by attention visualization
What did SPROF-GO learn? Did the network reason solely by
comparing the test proteins with the training samples or did it
learn the underlying chemical principles of protein functioning?
To better illustrate the decision mechanism of SPROF-GO, we
selected two examples (UniProt ID: Q6DR03 and Q9LIB5) in the
MF ontology test set and extracted their residue-level attention
scores from the self-attention pooling module in SPROF-GO. We

averaged the scores from different attention heads and differ-
ent assembled models as the final attention scores. Besides, we
applied InterProScan to search for functional domains in these
two sequences. As shown in Figure 3, Q6DR03 contains a DHHC
domain of palmitoyltransferases [47] in sequence positions of 140
to 277, where the attention scores are also higher. This protein
was annotated hierarchically with five GO terms down to ‘S-
acyltransferase activity’, in which SPROF-GO correctly predicted
four terms but missed one specific term, leading to the F-measure
of 0.889. Another case Q9LIB5 contains a GATA-type zinc finger
domain [48] in sequence positions of 38 to 93, where the atten-
tion scores by SPROF-GO are also higher. The presence of the
zinc finger domain associates this protein with several functions
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involving DNA-binding, in which SPROF-GO correctly predicted
all seven terms, leading to an F-measure of 1.000. The attention
visualization for these cases suggested that our method could
successfully identify and pay more attention to the functional
domains in sequences, and thus correctly predicted the correlated
functions of the proteins.

DISCUSSION
Protein function prediction benefits disease mechanism elucida-
tion and drug target discovery. Existing sequence-based meth-
ods mostly suffer from low predictive accuracy or high com-
putational cost. Although many methods have integrated pro-
tein structures, biological networks or literature information to
improve performance, these extra features are often unavailable.
Here, we propose a Sequence-based PROtein Function predictor
SPROF-GO, which has the following five notable features: (1)
SPROF-GO leverages a pretrained language model to efficiently
extract informative sequence embeddings, thus bypassing expen-
sive database searches; (2) The self-attention pooling is employed
to capture sequence domains useful for function prediction and
provide interpretability; (3) SPROF-GO applies a hierarchical learn-
ing strategy to produce consistent predictions and improve per-
formance; (4) The label diffusion algorithm is adopted to exploit
the homology information and overlapping community effect;
(5) SPROF-GO is accurate and robust, with better performance
than state-of-the-art sequence-based and even network-based
approaches, and great generalization ability on non-homologous
proteins and unseen species.

However, there is still room for further improvements on
SPROF-GO. First, applying GNN [49, 50] on predicted protein
structures from sequences by AlphaFold2 [51] or ESMFold [52]
may yield better performance [57]. Second, inspired by ATGO [53],
contrastive learning [54] could be applied on the PPI networks
only in the training phase to maximize the function similar-
ities between network neighbors, thus reflecting the guilt-by-
association principle. Third, drug and disease information could
be further incorporated using knowledge graph techniques [55],
and organism taxa could also be considered as in DeeProtGO [56].
Fourth, SPROF-GO currently only considers around 6200 GO terms
that have ≥50 training samples in order to optimize the training
efficiency and predicted accuracy (Supplementary Note 5). How
to effectively learn the terms with scarce training data remains
a challenging and interesting task to solve in our future. The
standalone version of SPROF-GO is available at https://github.
com/biomed-AI/SPROF-GO, which is easy to set up and run, and
the web server is freely available at http://bio-web1.nscc-gz.cn/
app/sprof-go. We suggest that our fast and accurate method
could scale with the current fast-growing sequence databases,
and provide useful information for biologists studying disease
mechanism and chemists interested in targeted drug design.

Key Points

• SPROF-GO is a sequence-based protein function predic-
tor which leverages a pretrained language model to effi-
ciently extract informative sequence embeddings, thus
bypassing expensive database searches.

• SPROF-GO employs self-attention pooling to capture
sequence domains useful for function prediction and
provide interpretability.

• SPROF-GO applies hierarchical learning strategy to pro-
duce consistent predictions and label diffusion to exploit
the homology information.

• SPROF-GO is accurate and robust, with better perfor-
mance than state-of-the-art sequence-based and even
network-based approaches, and great generalization
ability on non-homologous proteins and unseen species.
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